
Sound and Music for Interactive Games: Car Audio System
Project Report

Jim McGowan
Leeds Metropolitan University

MSc Sound and Music for Interactive Games
j.mcgowan4782@student.leedsmet.ac.uk

jim@bleepsandpops.com

INTRODUCTION
This project is an attempt to create an audio system to recreate
sounds for use in a racing game. The audio system was created
using Audio Units [1], the audio signal processing system
available on the Mac OS X and iOS operating systems. However,
the concepts and structure of the audio system are
implementation-agnostic and could be recreated in any other
modular audio processing platform, for example Cycling 74's Max
or Pure Data (PD).

The audio system is presented in an game-like application to drive
the system and demonstrate it in a gaming context. However,
although this application was created by including the audio
system code with the code for the other components, the audio
system remains a distinct entity and could also reside in a separate
process or application, receiving physics data via a system such as
Open Sound Control.

1.AIMS
This project aimed to create an car audio system that was generic
in the sense that with the appropriate input the system could
believably recreate the sound of any particular car that might be
desired within a racing game. Additionally, the system should not
present a significant processing load to the host system, allowing
it to be used effectively in resource-restricted game contexts.

2.GAME IMPLEMENTATION
The audio system is presented in a game-like application in order
to demonstrate its capabilities. The complete application is
structured as show in figure 1 below:

The 'game' is managed by the Game Coordinator object, which
presents the car selection UI, starts and stops the game, and
maintains the main game loop. The Input Controller reads input
from the keyboard, the Car object represents the physics model of

Figure 1. Game Application Structure.

the car, and the audio manager presents the interface to the audio
system, which it maintains.

On each pulse of the game clock the Game Coordinator reads the
accelerator, brake and steering input values from the Input
Controller and passes these to the Car physics model. It then
triggers the Car's periodic state update function, and reads the
updated Car state values (speed, RPM, etc) and passes these to the
Audio Manager which updates the audio system to suit.

2.1Specifying Cars
As mentioned above, the system aims to be generic enough to
believably recreate any car if the correct input is presented. To
this end, cars are specified in an XML file that details the car's
performance specifications and the identifies of the corresponding
audio samples. The performance data is used by the physics
model to accurately recreate the performance of the car and the
audio files are used by the Audio Manager to popular the audio
system. The values contained with in a car XML file are
described in Appendix 1.

3.AUDIO SYSTEM
The audio system is based on recorded looping samples, and is
similar in nature to the common crossfading sample approach
used in some games [2, 3, 4, 5]. Other approaches were
investigated during the course of the project, including granular
and synthetic approaches. However, such systems require
extremely precise recording and modeling of each specific car and
engine to be recreated, which presents a significant barrier to
entry. A looping sample system is simpler to provide audio
material for and, as this project will hopefully show, can produce
believably realistic audio output.

The audio system is modular, consisting of subsystems for engine,
exhaust, turbo, tyres, road sound and a master mix section. Each
of these is discussed in detail below. A diagram of the complete
system is shown in Appendix 2. The subsystems are contained and
controlled by an Audio Manager system that presents an Object-
Oriented API (Application Programming Interface) to the host
application or game. This manager creates an instance of the
audio system when required, receives physics data from the host
application/game, and passes the relevant data to the relevant
subsystem. The manager also deals with high level operations,
such loading the required audio samples indicated in a car's XML
specification and setting overall mix presents.

Maintaining the audio system as a collection of subsystems brings
several benefits. It allows for easy expansion should there be a
desire for additional audio elements be included in the system.
Individual subsystems can have their internal structure modified

1

Game
Coordinator

Input
Controller

Physics
Model

Audio
Manager

Audio System Components

mailto:j.mcgowan4782@student.leedsmet.ac.uk
mailto:j.mcgowan4782@student.leedsmet.ac.uk
mailto:jim@bleepsandpops.com
mailto:jim@bleepsandpops.com

without impact on other areas. Separation of processing into
logical areas also makes code reading and system maintenance
simpler.

3.1Engine and Exhaust Subsystems
The Engine subsystem is structured as shown in figure 2 below:

One file player unit and varispeed unit are created for each engine
loop sample provided for the specified car. These are connected
to a mixer which manages the relative levels of each sample. The
mixer in turn is connected to a low pass filter unit, which can be
used to simulate the car bonnet being open or closed, or the
listening position being within the engine bay.

The engine subsystem requires the car's current engine speed
(RPM) as input. This is used to calculate the required volume and
speed of each loop sample. The speed of each sample is
calculated by dividing the engine RPM by the sample's native
RPM, which gives a linear increase from 0 speed at 0 RPM to full
speed at the sample's native RPM, and linearly onwards. The
formula for this can been seen at line 221 in the source file
EngineExhaustSoundSystem.m

The volume of each sample (in a scale of 0 for silent to 1 for unity
gain) increases linearly from 0RPM to 1 at the sample's native
RPM, remains at 1 from the native RPM to 1.3x the native RPM,
after which it decays logarithmically. The graph below shows the
volumes for a five sample system. Engine RPM is mapped over
the x-axis and sample volume over the y-axis.

As the graph shows, two special cases exist: the first sample
should be at full volume constantly until the engine RPM reaches

File Player

Mixer

File Player

File Player

...

File Player

Low Pass
Filter

1 Player+Varispeed Unit per 1000RPM Loop

Speed Formula

Volume Formula

Varispeed

Varispeed

Varispeed

Varispeed

Car Engine
RPM

Figure 2. Engine Audio Subsystem.

Figure 3. Engine Sample Volumes.

its native RPM; and the last sample should play at full volume
from its native RPM upwards.

The code for the volume formula can be see at line 229 in the
source file EngineExhaustSoundSystem.m.

At the beginning of this project the engine and exhaust systems
made use of the more 'standard' crossfading approach, where each
sample is at full volume at its native RPM, and an equal power
crossfade is applied to fade the sample out when the engine RPM
reaches the native of the next higher sample, which has faded in
over the same period. This is shown in the graph below:

However, I found that in order to maintain a consistent sound as
the car revs up and down, realism in the sound had to be
sacrificed. At lower speeds a car engine produces more noticeable
high frequency content, from tappets, rods and other small items.
The main engine 'drone' from the combustion, pistons and
crankshaft is at a relatively low intensity. As the engine speed
increases the intensity of the main drone increases sharply, and the
higher frequency elements increase further in pitch and are less
present in the overall sound. Using the between-sample crossfade
system the different spectral content of the samples at different
RPMs are great enough (at 1000 RPM intervals at least) that the
transitions between samples are very obvious to the listener and
do not sound natural. In order to get a natural sound as the car
increases and decreases RPM over its full range, the individual
samples had to be heavily processed to smooth the transitions.
This had the effect of losing some of the distinct characteristics of
each engine, reducing it to simpler drone. Experimentation
showed that the linear-up/logarithmic-down technique used gave a
much more smooth and natural sound as the engine speed
increases and decreases.

The exhaust audio subsystem is exactly the same as the engine
subsystem, but does not make use of the low pass filter at the
mixer output.

3.2Turbo Subsystem
The turbo subsystem is structured as shown in figure 5 below:

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.5

1

1.5

Figure 4. Crossfading System Sample Volumes.

Mixer
File Player

File Player

Turbine Loop

Pressure Valve Sample

Speed Formula

Volume Formula

Playback Trigger

Varispeed

Car Engine
RPM

Car Valve
Dump

2

A file player unit and varispeed unit are used to playback the
turbine loop. A file player unit is used to playback the pressure
release sample. These elements are connected to a mixer.

The turbo subsystem requires notifications of the car's pressure
release valve triggering and the car's engine speed as input. The
pressure release notification simply triggers the playback of the
non-looping valve sample. The engine speed is used to determine
the volume and speed of the turbine loop.

The turbine volume curve is given by the formula:

This gives a rapid increase in volume at low speed, leveling out
slightly at higher speeds. The code for this can be seen at line 193
in the source code file TurboSoundSystem.m

The turbine speed increases exponentially with engine speed, and
is given by the formula:

The code for this can be seen at line 190 in the source code file
TurboSoundSystem.m

3.3Tyres Subsystem
Based on advice from practicing game audio designers [5, 6], the
audio system has individual elements for wheel spin (where the
wheels’ forward speed is faster than the car's forward speed) and
skidding (where the tyres are moving in a direction other than
perpendicular to their axle).The tyres subsystem deals with these
sounds and is structured as shown in figure 6 below:

A file player/varispeed pair is used for the wheel spin loop and
another for the skid loop. These elements are connected to a
mixer, which is in turn connected to a reverb unit.

The tyre subsystem requires car wheel spin and lateral skid data as
input. These values have a range of 0 for no skid/spin to 1 for
complete loss of tractions. These are used to calculate speed and
volume values for the spin and skid sounds. The volume of the
spin sound is the car's wheel spin value doubled and constrained
between 0 and 1. This allows the sound fade up to full volume as
the spin value reaches 0.5, which gives a natural sound. The code

Figure 5. Turbo Audio Subsystem.

Mixer

File Player Varispeed

File Player

Wheel Spin Loop

Lateral Skid Loop
Reverb

Speed Formula

Volume FormulaCar Wheel
Spin

Varispeed

Volume Formula

Speed FormulaCar Lateral
Skid

Figure 6. Tyre Audio Subsystem.

for this can be seen at line 276 in the source code file
TyreSoundSystem.m.

By the same reasoning the skid sound volume is 3x the car's skid
value, constrained between 0 and 1. To reduce repetitiveness the
start point of the skid loop is randomized each time a skid begins
Therefore a quick fade in is applied over the volume values when
a skid begins to prevent any clicking sounds should playback
begin at a point of non-zero power in the audio file. The code for
this can be seen at line 288 in the source code file
TyreSoundSystem.m.

To mimic the increased intensity of wheel spin and skid sounds at
high speeds the playback speed of each loop is varied. The spin
sound playback speed is 1.5x the car's spin value and the skid
sound playback speed is 1.5x the car's skid value. The code for
these formulas can be seen at lines 282 and 327 respectively in the
source code file TyreSoundSystem.m.

As traction data from the physics system can drop off abruptly, the
reverb unit is used to help provide a natural decay to the tyre
sounds. The values for the reverb unit can be seen at line 230 in
the source code file TyreSoundSystem.m.

3.4Road Subsystem
The road subsystem reproduces the sound of the car's tyres
traveling over the road surface. It is structured as shown in figure
7 below:

A file player unit plays the road noise loop, and is connected to a
time shift unit, which provides a time-compression/expansion
(speed change without pitch change) effect.

This subsystem requires the car's road speed as input. The volume
of the road sound fades up linearly from 0 at 0KPH to 1 at 30KPH
to give a natural sound. The code for this formula can be seen at
line 187 in the source code file RoadSoundSystem.m.

The playback speed increases with road speed based on the
formula:

The output of this formula is constrained to between 0.6 and 1.9.
This formula gives a natural increase, hitting normal speed at
75KPH and continuing to increase thereafter. The code for this
formula can be seen at line 178 in the source code file
RoadSoundSystem.m.

3.5Master Section Subsystem
The master section subsystem provides a mixer with the output
from each of the other subsystems as inputs. This is used to adjust
the relative levels of each subsystem when moving listening
positions around the car. The master system also contains and low
pass filter unit on the output of the mixer, which can be used when
the listening position is moved to within the car.

MixerFile Player Time Shift

Speed Formula
Car Road

Speed

Figure 7. Road Audio Subsystem.

3

From an implementation point of view, the master section
subsystem also maintains the Audio Units Graph, which is the
required context within which the Audio Units reside. Therefore
this subsystem is also responsible for starting and stopping audio
rendering and is the point at which hardware usage can be
monitored.

3.6Preparing Audio Samples
For the example 'game' application I prepared 3 cars: a 2010
Mercedes Benz E250 CDI, a 2010 Audi Q7 Quattro Diesel and a
2000 Volkswagen Beetle.

I recorded engine and exhaust audio at 1000 RPM increments for
each. The engine speed of each was monitored using only each
car's dashboard tachometer. Therefore the recorded sounds at
each speed were not at exactly 1000RPM intervals and it was
therefore necessary to make small adjustments to the speed of the
recordings. The 4000RPM engine recording as a fixed reference,
chosen only as 4000 divides easily. This sample was slowed to
25%, 50%, 75% speeds and increased to 120% speeds to give
reference samples at 1000, 2000, 3000 and 5000 RPM. The other
recordings had their speed adjusted so that they were in tune with
the reference samples. The 4000RPM exhaust samples were
tuned to match their 4000RPM engine counterpart, and the
process was repeated for the exhaust recordings.

Other than fine tuning the speed and editing to loopable segments,
no other processing was applied to the engine and exhaust sounds,
in order for the audio system to produce as realistic an output as
possible.

Various recordings were made of the Volkswagen Beetle traveling
over tarmac at different speeds with its engine off to create
material for the road noise loop. These were edited to give a
loopable, steady-speed sound, in the range of around 40KPH.
Each of the three cars shares the same road loop.

I did not have the resources to record a turbo charger in isolation
(i.e., not attached to a running engine), which was unfortunate as
the audio system requires clean turbo sounds. After listening to
descriptions and sample recordings of turbo sounds, as presented
in a lecture on racing game audio [2], I discovered the
fundamental sonic elements of a turbo charger's turbine are a large
amount of white noise and a very high pitched fan sound, very
similar to the sound of a hand held hair dryer. Therefore, I made
recordings of a hair dryer and manipulated them to recreate a
close approximation to reference sound presented in the lecture.
The turbo's pressure release valve sound is that of the rapid

Figure 8. Recording VW Beetle Engine Sounds.

release of compressed air, therefore I was able to recreate this by
editing compressed air recordings.

Additionally, I did not have the resources to record the three cars
skidding and wheel spinning. For these sounds, I edited
recordings from the Freesound.org project of a Chrysler skidding
on a track and of a Volvo's wheels spinning. Individual spin and
skid elements were extracted from these recordings and used to
create loopable samples. Each of the three cars share these same
samples.

4.PHYSICS MODEL
As seen above, the audio system requires realistic and accurate
physics data in order to accurately reproduce car sounds. The
physics model created for the project is crude but, with exceptions
discussed below, is able to provide usable data for the audio
system.

The car physics model has performance attributes that are loaded
from the car's XML specification: max torque, engine idle RPM,
engine max RPM, max braking force, auto shift up and down
RPMs, aerodynamics, weight, tyre circumference, final drive
ratio, gear ratios and gear change time. These attributes are
immutable and are used in calculations to update the car's state.

The model has three adjustable parameters for input: accelerator
pedal position, brake pedal position, and steering wheel position.
These values are updated by the Game Coordinator on each each
pulse of the game clock, based in the values received by the Input
Controller.

On each each pulse of the game clock the Game Coordinator
triggers the car physics model's update function, which updates
the car's state based on the input parameters and its performance
characteristics. The process of update function is as follows:

1. Calculate force on road from driven wheels

2. Calculate braking force

3. Calculate air resistance (drag) force

4. Calculate friction force

5. Sum these forces

6. Calculate the acceleration from the summed forces

7. Apply the acceleration to the car's velocity vector

8. Calculate traction values by comparing the velocity angle
and magnitude to the wheel speed and steering angle

9. Update road speed and engine RPM based on velocity and
traction

10.Change gear if required.

The car physics model has the following state values that can
change on each update:

•Engine RPM •CarAngle

•Traction •Lateral Skid

•Road Speed •Wheel Spin

•Current Gear •Overall Velocity Vector.

4

After triggering the model’s update function the Game
Coordinator reads these updated values and passes the relevant
data to the Audio Manager, which in turn passes the data to the
subsystem inputs.

5.SYSTEM PERFORMANCE
5.1Processing & Ram Performance
CPU load of the audio processing system is very low.
Measurements were taken on an Apple MacBook Pro with an Intel
Core 2 Duo processor running at 2.93GHz. When a car is at idle
the audio processing system uses between 0.16% and 0.2% of the
overall available processing power. When a car is running at
speed, the audio system uses between 0.23% and 0.25%. Should
this system be used in a race involving eight cars, the car audio
processing load would remain below 2%.

The example Mercedes car has the largest set of sample files. The
samples in the example ‘game’ application are uncompressed
48kHz, 24 bit AIFF files, with a combined data size of 11MB.
However, with tighter editing of the loops, sample rate reduction
on the lower frequency samples and compression, this data size
can be reduced to around 500KB

5.2Audio Performance

5.2.1Engine Audio
The accompanying audio file ‘Audio System Acceleration’ is a
recording of the output of the audio system when the player is
accelerating and decelerating in the Mercedes car. The file ‘Real
Car Acceleration’ is a recording of a Mustang Mystic Cobra
during a race (recorded from within the car). Comparing the two
recordings, the pitch changes over the course of acceleration are
very similar. However, in the real car recording a sudden short
increase then decrease in engine pitch can be heard immediately
after completing a gear change. This detail is not present in the
sound from the audio system.

Having investigated this detail whilst driving a real car, it was
revealed that this is caused by a driver’s foot beginning to depress
on the accelerator pedal whilst gradually releasing the clutch. The
engine is able to increase speed whilst disconnected from the
drive system, then this speed is reduced as the engine is
reconnected with the clutch release and encounters the friction of
the drive system.

Clutch engagement and disengagement in the physics model in
the example application is entirely binary - its state is either fully
engaged or disengaged - and changes between the two states are
therefore instantaneous. With a input data from a more detailed
physics system that modeled the analogue nature of the clutch
pedal, I believe the audio system would accurately recreate these
engine pitch details when completing a gear change.

The accompanying audio file ‘NFS Game Acceleration’ is a
recording of car audio from Electronic Arts’ game Need for
Speed: Shift. Comparison with the audio system output shows
again that the engine pitch curves are very similar. In the game
recording the post-gear change engine RPM detail heard in the
real car recording are not present, which is an interesting
omission. Unfortunately it is not possible to determine from the
game alone whether this is a result of the game’s physics system
or a sound design decision.

In the game recording there is an initial burst of high revs as the
car pulls away from rest, caused by wheel spin reducing traction
so that less resistance is carried up the drive system to the engine.

(although the actual tyre spin sound is not clearly heard in this
recording, it can be heard at other points during gameplay). This
is a much more believable sound that the very short high rev burst
and wheel spin screech heard on the audio system recording.

There are two factors causing this less believable sound. The first
is that the wheel spin calculations within the physics model are
too crude and do not produce particularly useful data. Attempts
were made to introduce compensative adjustments to the model,
but these simply produced an excess of spin, making control of
the car very difficult.

The second cause may be that the tyre subsystem in the audio
system may be to tightly coupled to the physics data. Discussions
with the audio designer for the Need for Speed game series [5]
revealed that unless wheel and tyre physics data is exceptionally
accurate, tyre audio system needs to be de-coupled from the
physics system and a more audio-aesthetic approach taken to
create believable sounds.

5.2.2Skid Audio
The accompanying audio files ‘Audio System Skid’, ‘Real Car
Skid’ and ‘NFS Game Skid’ are recordings of skid sounds from
the audio system, the Mustang Mystic Cobra racing and the Need
For Speed: Shift game respectively.

The audio systems skid sounds compare quite well with those
from the real car and the game, though there are some details that
could be improved. In the real car skids the sounds of individual
tyres can be discerned, which isn’t the case for either the audio
system or the game. This could be mimicked in the audio system
with multiple instances of the tyre subsystem, one representing
each wheel, though this would require precise per-wheel physics
data as an input.

The variations in pitch are slightly more pronounced in the real
car and game recordings than in the audio system sound. The
speed formula within the tyres subsystem could be adjusted to
create greater variations.

6.FURTHER DEVELOPMENT
As discussed above, the limitations of the physics system used
within the example ‘game’ application prevent the full potential of
the audio system from being explored. It would be of great
benefit to couple the audio system to a more precise and detailed
physics model that could provide more realistic input. The Open
Racing Car Simulator (TORCS) [7], a racing game engine and
research platform, and VAMOS, “an automotive simulation
framework with an emphasis on thorough physical modeling” [8]
are both open source C++ projects that could possibly be used as
sources of better physics data.

The control interface for the example ‘game’ application (use of
the computer’s arrow keys) is very limited due the binary on/off
nature of each button. Receiving input data from an input device
with analogue controls, such as an analogue game pad, could
provide much more realistic input data to the system.

With better input and physics data, the audio system could be
further developed in the knowledge that it is platform-agnostic -
that implementation details within the audio system are not
compensating for poor input. This would allow the audio system
to become truly independent and portable for use in different
games.

The road sound subsystem currently only allows for one road
surface. This could be expanded to included different road

5

surface as might be found around a race track (tarmac, gravel,
grass). An input from the host game system would be required to
indicate which surface sound to use.

When utilizing the audio system within a racing game, multiple
instances of the system would be required, one for each car in a
race, and the output of each instance would need to be localized in
3D game space to match the location of the corresponding car.
There are several ways in which the 3D sound locations could be
managed, depending on the implementation of the game system.
however by continuing to make use of Audio Units, the 3D sound
processing could be achieved very simply and all the audio
processing would be contained within the audio system.

The Macintosh and iOS operating systems include an Audio Unit
entitled 3DMixer which can “can mix audio from several different
sources and then localize the sound in 3D space” [9]. If each
instance of the car audio system remains within the enclosure of a
single object like the Audio Manager in the example ‘game’
application, that object could maintain a 3DMixer unit and update
its state based on 3D positional information from the game
engine. The output of the 3D mixer can be configured for stereo,
quadrophonic or 5.0 rendering.

To demonstrate how this might be achieved figures 9 and 10 show
the audio structure as used in the example ‘game’ application, and
how this would be extended for multiple cars in 3D space.

Of course the simplicity of this 3D extension is only applicable
whilst the system is implemented using Audio Units. Should the
system be ported to another audio processing platform, the 3D
implementation would differ.

One Car System

Engine

Master
Section

Exhaust

Turbo

Tyres

Road

Audio M
anger API

Car Physics
Data

Audio
Output

Figure 9. Existing System.

One Car System

Audio M
anger API

Car Physics
Data

One Car System

One Car System

One Car System

One Car System

3D Mixer

Car Position
Data

Audio
Output

Figure 10. System Expanded With Multiple Cars in 3D.

7.CONCLUSIONS
Overall the project meets its aims with reasonable success. The
generic-adaptable nature of the system is demonstrated by the
different performance and audio characteristics of the three
different cars included in the demonstration application. Overall
the hardware resource requirements of the audio system are low.
Finally, though some improvements may be made, the audio
output compares favourably with recordings of real cars and car
systems from existing games.

REFERENCES
[1] Apple, Inc. Turning Up the Volume with Audio Units. 2006.

Retrieved 21 January 2011: http://developer.apple.com/
library/mac/#technotes/tn2004/tn2112.html

[2] Caviezel, M. & Robinson, J. Advanced Audio Techniques for
Racing Games: Creating Audio for Forza Motorsport2. In:
Game Developers Conference, 5-9 March 2007, San
Francisco. CMP Game Group 2007.

[3] Caviesel, M. Forza Motorsport 3: The Design, Process and
Pipeline of a Car. In: Game Developer's Conference Canada,
6-7th May 2010, Vancouver. CMP Game Group, 2010.

[4] Munro, K. Field Report: High Octane Recording and
Implementation of Engine Audio. In: Game Audio Summit,
GDC Austin, 15-16 September 2009, Austin, Texas. CMP
Game Group 2009.

[5] Deenen, C., Car Audio System. Personal Email to Jim
McGowan. 4 January 2011.

[6] Kastbauer, D., Implementing Car Tyre/Skid Sounds. Personal
Email to Jim McGowan. 28 December 2010.

[7] Wymann, B. & Espié, E. Torcs. Retrieved 21 January 2011:
http://torcs.sourceforge.net/

[8] Varner, S. Vamos Automotive Simulator. Retrieved 21
January 2011: http://vamos.sourceforge.net/

[9] Apple, Inc. Technical Note TN2112: Using the 3DMixer
Audio Unit. 2004. Retrieved 21 January 2011: http://
developer.apple.com/library/mac/#technotes/tn2004/
tn2112.html

6

http://developer.apple.com/library/mac/#technotes/tn2004/tn2112.html
http://developer.apple.com/library/mac/#technotes/tn2004/tn2112.html
http://developer.apple.com/library/mac/#technotes/tn2004/tn2112.html
http://developer.apple.com/library/mac/#technotes/tn2004/tn2112.html
http://torcs.sourceforge.net
http://torcs.sourceforge.net
http://vamos.sourceforge.net
http://vamos.sourceforge.net
http://developer.apple.com/library/mac/#technotes/tn2004/tn2112.html
http://developer.apple.com/library/mac/#technotes/tn2004/tn2112.html
http://developer.apple.com/library/mac/#technotes/tn2004/tn2112.html
http://developer.apple.com/library/mac/#technotes/tn2004/tn2112.html
http://developer.apple.com/library/mac/#technotes/tn2004/tn2112.html
http://developer.apple.com/library/mac/#technotes/tn2004/tn2112.html

FURTHER BIBLIOGRAPHY
Farnell, A. Designing Sound. MIT Press, 2010.

Finlay, D. Power and Torque Explained, Car Keys, 2002.
Retrieved 30 November 2010. http://www.carkeys.co.uk/features/
technical/power_and_torque_explained.aspx

Macro Monster, Physics for Car Games. 2003. Retrieved 29
November 2010. http://www.asawicki.info/Mirror/Car%20Physics
%20for%20Games/Car%20Physics%20for%20Games.html

Zuvich, T, Vehicle Dynamics for Racing Games. Article of
unknown origin.

ACKNOWLEDGEMENTS
The reference audio of the real car race is from the video NASA
MA Summer Breeze Sunday Summit Point Thunder Race 8-22-10
by Frank Corkran, available from http://www.vimeo.com/
14410796

The spin and skid sounds in were created from the recordings
Chrysler LHS tire squeal 01 (04-25-2009), Chrysler LHS tire
squeal 02 (04-25-2009), Chrysler LHS tire squeal 02
(04-25-2009),Chrysler LHS tire squeal 04 (04-25-2009) and
AE0090 Volvo 740 GLE handbrake turn 01 created by user
audible-edge available from the Freesound.org project.

7

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/

Appendix 1: The Car Specification XML File

This table details the values found the in the car specification XML files that are used as input to the physics and audio systems.

Value Name Value Unit or Type Required or Optional Description

Name Text Required The name of the car

maxEngineRPM In Revolutions per Minute (RPM) Required The maximum RPM of the car's
engine

maxTorque In Newton meters (Nm) Required The Maximum torque produced
by the car's engine

maxBrakingForce In Newtons (N) Required The combined maximum braking
force from all the car's wheels

engineIdleRPM In Revolutions per Minute (RPM) Required The car's engine idle speed

autoShiftUpRPM In Revolutions per Minute (RPM) Required The engine speed at which the
auto gear system will shift
upwards

autoShiftDownRPM In Revolutions per Minute (RPM) Required The engine speed at which the
auto gear system will shift
downwards

aCd Unitless number Required The cars frontal area multiplied by
its drag coefficient

weight Kilograms (Kg) Required The car's weight

tyreCircumference Millimeters (mm) Required The circumference of the car's
tyres.

finalDriveRatio Decimal number rated against 1 Required The car's final drive (or axle) ratio

gears Array of decimal number rated
against 1

One array element required for
each gear

The car's gear ratios in a sorted
array with first gear as the first
element. Reverse is not included.

gearShiftTime In seconds Required The length of time taken to change
gear

engineSounds Array of filenames At least 1 filename required The engine sample names in an
array. The first sample must be at
1000RPM. If more than 1 sample
is listed, they must be at
1000RPM

exhaustSounds Array of filenames At least 1 filename required The engine sample names in an
array. The first sample must be at
1000RPM. If more than 1 sample
is listed, they must be at
1000RPM.

turboSound Filename Optional The name of the optional turbo
turbine sample

turboDumpSound Filename Optional The name of the optional turbo
pressure release valve sample

skidLoopSound Filename Required The name of the required skid
loop sample

wheelSpinSound Filename Required The name of the required wheel
spin loop sample

roadSound Filename Required The name of the required tyres-
on-road-surface sound

8

Road Subsystem

File Player

Mixer

File Player

File Player

...

File Player

Low Pass Filter

Mixer

File Player

File Player

MixerFile Player Time Shift

Mixer Low Pass Filter System Audio Output

Engine Subsystem

1 Player+Varispeed Unit per 1000RPM Loop

Turbo Subsystem

Turbine Loop

Pressure Valve Sample

Mixer

File Player Varispeed

File Player

Tyres Subsystem

Wheel Spin Loop

Lateral Skid Loop

Reverb

Road Noise Loop

Speed Formula

Volume Formula

Varispeed

Varispeed

Varispeed

Varispeed

File Player

Mixer

File Player

File Player

...

File Player

Exhaust Subsystem

1 Player+Varispeed Unit per 1000RPM Loop

Speed Formula

Volume Formula

Varispeed

Varispeed

Varispeed

Varispeed

Speed Formula

Volume Formula

Playback Trigger

Varispeed

Speed Formula

Volume Formula

Speed Formula

Master Section

Listener Position
Information

Car Engine RPM

Car Engine RPM

Car Engine RPM

Car Valve Dump

Car Wheel Spin

Car Road Speed

Varispeed

Volume Formula

Speed Formula
Car Lateral Skid

Appendix 2: The Full Audio System

This chart outlines the complete audio system.

9

